First-Order Logic

Relations

Motivation, Again

We are now in position to translate the Monty Python argument.

The argument sketch is a Monty Python sketch.
Every Monty Python sketch is funny.
Therefore, the argument sketch is funny.

Motivation, Again

Here's how ...
$\mathrm{a}=$ the argument sketch
$F=\ldots$ is funny
$\mathrm{M}=\ldots$ is a Monty Python sketch

Motivation, Again

Given our notational choices, we now have ...

The argument sketch is a Monty Python sketch.
Every Monty Python sketch is funny.
Therefore, the argument sketch is funny.

Motivation, Again

Given our notational choices, we now have ...

Ma
Every Monty Python sketch is funny.
Therefore, the argument sketch is funny.

Motivation, Again

Given our notational choices, we now have ...

Ma
$(\forall x)(M x \rightarrow F x)$
Therefore, the argument sketch is funny.

Motivation, Again

Given our notational choices, we now have ...

Ma
$(\forall x)(M x \rightarrow F x)$

Fa

Motivation, Again

Given our notational choices, we now have ...

Ma
$(\forall x)(M x \rightarrow F x)$

Fa

Now we need to either develop a semantics for such sentences (and test for validity) or we need to develop a proof theory.

More Categoricals

Let's translate a particular categorical sentence: "Some Muppets wear hats."

More Categoricals

What does it mean to say that some Muppets wear hats?

I can find something that is both a Muppet and a hat-wearer.

More Categoricals

What does it mean to say that some Muppets wear hats?

I can find something that is both a Muppet and a hat-wearer.

More Categoricals

What does it mean to say that some Muppets wear hats?

I can find something that is both a Muppet and a hat-wearer.

NO

More Categoricals

What does it mean to say that some Muppets wear hats?

I can find something that is both a Muppet and a hat-wearer.

NO

More Categoricals

What does it mean to say that some Muppets wear hats?

I can find something that is both a Muppet and a hat-wearer.

NO
NO

More Categoricals

What does it mean to say that some Muppets wear hats?

I can find something that is both a Muppet and a hat-wearer.

NO

NO

More Categoricals

What does it mean to say that some Muppets wear hats?

I can find something that is both a Muppet and a hat-wearer.

NO

NO

NO

More Categoricals

What does it mean to say that some Muppets wear hats?

I can find something that is both a Muppet and a hat-wearer.

NO

NO

NO

More Categoricals

What does it mean to say that some Muppets wear hats?

I can find something that is both a Muppet and a hat-wearer.

NO

NO

YES!

More Categoricals

How do we translate the sentence, "Some Muppets wear hats"?

Let's start with the predicates:

$$
\begin{aligned}
& \mathrm{M}=" . . . \text { is a Muppet" } \\
& \mathrm{H}=\text { " } . . . \text { wears a hat" }
\end{aligned}
$$

More Categoricals

Some Muppets wear hats.
$(\exists x)(M x \wedge H x)$

More Categoricals

Some Muppets wear hats.

$(\exists x)(M x \wedge H x)$

There is at least one x

More Categoricals

Some Muppets wear hats.

$(\exists x)(M x \wedge H x)$
There is at least one x

x is a Muppet

More Categoricals

Some Muppets wear hats.

There is at least one x
$(\exists x)(M x \wedge H x)$

x is a Muppet

More Categoricals

Some Muppets wear hats.

More Categoricals

Some Muppets wear hats.

More Categoricals

Some Muppets wear hats.

Relations

First-order logic gives us the power to represent categorical sentences. But it is considerably more powerful than that! First-order logic also lets us represent relational claims.

Relations

A categorical sentence uses only one-place predicates and a single quantifier expression.

But often, we want to talk about relations between things.

Relations

One-place predicates are called monadic predicates. By contrast, relations have two or more places:

$$
\begin{aligned}
& \mathrm{L}=\text { " } \quad \text { loves __" } \\
& \mathrm{E}=\text { "_ eats more __ than __" } \\
& \mathrm{A}=\text { "_ asks __ to do __ for __" } \\
& \mathrm{S}=\text { "_ is shaking hands with __" }
\end{aligned}
$$

Relations

Attaching constant terms to a relation creates a simple sentence:

Lpk = "p loves k"
$\mathrm{Dab}=$ " a is one meter from b "
Smn = "m is shaking hands with $n "$

Relations

We will represent two-place relations using directed graphs. If Rab is true for constants a and b, then we draw an arrow from a to b.

C

Relations

Since there is no arrow from b to c, Rbc is false according to our picture.

C

Quantifiers and Relations

Adding quantifiers, we can translate more complicated sentences, like:

Betty is shaking hands with someone.

$$
\text { (} \exists x) \text { Sbx }
$$

Everyone loves Betty.
$(\forall x) L x b$

Quantifiers and Relations

Given that L = "__ loves __" how should we translate the following sentence into English?

$$
(\forall x)(\exists y) L x y
$$

Quantifiers and Relations

Given that L = "_ loves __" how should we translate the following sentence into English?

$$
(\forall x)(\exists y) L x y
$$

Everyone loves someone or other.

Quantifiers and Relations

Given that L = "__ loves __" how should we translate the following sentence into English?

$$
(\exists x)(\forall y) L x y
$$

Does the sentence above say the same thing as our earlier sentence?

$$
(\forall y)(\exists x) L x y
$$

Quantifiers and Relations

A joke: Every 30 seconds, someone in the U.S. steals a car.

Quantifiers and Relations

A joke: Every 30 seconds, someone in the U.S. steals a car.

We have to find this person (or cat) and stop him!

Quantifier and Relations

Given that Lxy $=x$ loves y, translate the following:

$$
\begin{array}{ll}
(\forall x)(\exists y) L x y & (\forall y)(\exists x) L x y \\
(\exists x)(\forall y) L x y & (\exists y)(\forall x) L x y
\end{array}
$$

Interesting Relations

Some relations have special properties that we care about. We focus on three such properties:

Reflexive
Symmetric
Transitive

Interesting Relations

A relation R is reflexive just in case everything is R-related to itself.

$$
\begin{aligned}
& \mathrm{F}=\text { "_ is less than five meters from__" } \\
& \mathrm{Q}=\text { "__ is exactly as frustrating as __" }
\end{aligned}
$$

Interesting Relations

A relation R is reflexive just in case everything is R-related to itself.
$(\forall x) R x x$
a
$\int \begin{aligned} & C \\ & i\end{aligned}$

Interesting Relations

Some relations are symmetric. They have the same truth value regardless of the order of their inputs.

$$
\begin{aligned}
& \mathrm{S}=\text { "_ is shaking hands with __" } \\
& \mathrm{H}=\text { "_ is exactly as heavy as _"" } \\
& \mathrm{N}=\text { "_ is nearby __" }
\end{aligned}
$$

Interesting Relations

A relation R is symmetric iff every pair that is R related in one order is R-related in both orders.

$$
(\forall x)(\forall y)(R x y \rightarrow R y x)
$$

Interesting Relations

A relation R is transitive just in case when both Rab and Rbc hold, Rac holds as well.

$$
\begin{aligned}
& \mathrm{W}=\text { "_ is heavier than __" } \\
& \mathrm{P}=\text { "_ is provable from_"" } \\
& \mathrm{G}=\text { "_ is as green as __"" }
\end{aligned}
$$

Interesting Relations

A relation R is transitive iff having Rab and Rbc guarantees having Rac.

$$
(\forall x)(\forall y)(\forall z)((R x y \wedge R y z) \rightarrow R x z)
$$

Interesting Relations

Some relations are reflexive, symmetric, and transitive. Such relations are called equivalence relations. The identity relation is an example of an equivalence relation.

Identity is such a special relation that we will give it its own symbol, =, and we will write $(a=b)$, rather than $=a b$.

Interesting Relations

Suppose we have a relation R over three individuals as pictured below. What properties hold for the relation R ?

Interesting Relations

What properties hold for the relation now?

Interesting Relations

After removing the a to c edge, what properties hold for the relation?

Interesting Relations

Finally, what properties hold for the relation, now?

c^{c}

Interesting Relations

Let's do some simple translations. Suppose $\mathrm{T}=$ "... is taller than ..." and b stands for Betty.
($\exists x)$ Txb
($\forall \mathrm{x}$) Tbx
Everyone is taller than someone or other.
Betty is not taller than herself.

Identity

For the most part, we treat relations in a generic way. However, one relation is special.

Identity gets its own symbol, =, and we write $(a=b)$, rather than $=a b$.

Identity

Identity is an equivalence relation: it is reflexive, symmetric, and transitive.

In fact, identity is the smallest or most fine-grained equivalence relation.

©

Identity

We can use identity to translate sentences involving superlatives or numerical claims.

Jim is the shortest man in the room.

$$
(M j \wedge R j) \wedge(\forall x)((M x \wedge R x) \rightarrow(S j x \vee(j=x)))
$$

There is exactly one fish.

$$
(\exists x)(F x \wedge(\forall y)(F y \rightarrow(y=x)))
$$

Identity

Let's try two more examples:

The Godfather was the best film of 1972.

There is exactly one instructor for PHIL 103.

A Brief Word About Nothing

Suppose you want to translate sentences like:
Seinfeld is a show about nothing.

A Brief Word About Nothing

When I want to translate sentences involving words like nothing, nobody, or nowhere, I will generally use the construction $\sim(\exists x) \phi$.

There isn't even one thing that would make ϕ true.

A Brief Word About Nothing

In the Seinfeld case, we will let A = "... is about ---" and $S=$ "... is a show." Then let n denote the show Seinfeld. Then we can translate the sentence, "Seinfeld is a show about nothing," as follows:

$$
(S n \wedge \sim(\exists x) A n x)
$$

A Brief Word About Nothing

Lewis Carroll (aka Charles Dodgson) made comic use of nothing in Through the Looking Glass.

A Brief Word About Nothing

Lewis Carroll (aka Charles Dodgson) made comic use of nothing in Through the Looking Glass.

A Brief Word About Nothing

Lewis Carroll (aka Charles Dodgson) made comic use of nothing in Through the Looking Glass.

A Brief Word About Nothing

What is going on in the dialogue here? What makes the joke work?

A Brief Word About Nothing

What is going on in the dialogue here? What makes the joke work?

The king is treating the word "nobody" as a name.

A Brief Word About Nothing

What is going on in the dialogue here? What makes the joke work?

The king is treating the word "nobody" as a name.

But it isn't a name.

A Brief Word About Nothing

What is going on in the dialogue here? What makes the joke work?

The king is treating the word "nobody" as a name.

But it isn't a name. The word "nothing" does not designate any thing.

A Brief Word About Nothing

If nothing is not a name, then how should we translate sentences like, "Nobody walks slower than you do"?

A Brief Word About Nothing

If nothing is not a name, then how should we translate sentences like, "Nobody walks slower than you do"?

Let $\mathrm{W}=$ " ... walks slower than ..."

A Brief Word About Nothing

If nothing is not a name, then how should we translate sentences like, "Nobody walks slower than you do"?

Let $\mathrm{W}=$ ".. walks slower than ..."

Let c name the person indexed by "you."

A Brief Word About Nothing

If nothing is not a name, then how should we translate sentences like, "Nobody walks slower than you do"?

Finally, let $\mathrm{P}=$ "... is a person."

A Brief Word About Nothing

If nothing is not a name, then how should we translate sentences like, "Nobody walks slower than you do"?

$$
\sim(\exists x)(P x \wedge W x c)
$$

Next Time

We will talk about validity in first-order logic.

