First-Order Logic

Models \& Validity

Review: Relations

Last time, we looked at three properties of relations: reflexivity, symmetry, and transitivity. Any relation that has all three properties is called an equivalence relation.

Review: Relations

Suppose we have a relation R over three individuals as pictured below. What properties hold for the relation R ?

Review: Relations

What properties hold for the relation now?

Review: Relations

After removing the a to c edge, what properties hold for the relation?

Review: Relations

Finally, what properties hold for the relation, now?

c^{c}

Review: Relations

Let's do some simple translations. Suppose $\mathrm{T}=$ "... is taller than ..." and b stands for Betty.
($\exists \mathrm{x}) \mathrm{Txb}$
($\forall x$) Tbx
Everyone is taller than someone or other.
Betty is not taller than herself.

Identity

For the most part, we treat relations in a generic way. However, one relation is special.

Identity gets its own symbol, =, and we write $(a=b)$, rather than $=a b$.

Identity

Identity is an equivalence relation: it is reflexive, symmetric, and transitive.

In fact, identity is the smallest or most fine-grained equivalence relation.

©

Identity

We can use identity to translate sentences involving superlatives or numerical claims.

Jim is the shortest man in the room.

$$
(M j \wedge R j) \wedge(\forall x)((M x \wedge R x) \rightarrow(S j x \vee(j=x)))
$$

There is exactly one fish.

$$
(\exists x)(F x \wedge(\forall y)(F y \rightarrow(y=x)))
$$

Identity

Let's try two more examples:

The Godfather was the best film of 1972.

There is exactly one instructor for PHIL 103.

A Brief Word About Nothing

Suppose you want to translate sentences like:
Seinfeld is a show about nothing.

A Brief Word About Nothing

When I want to translate sentences involving words like nothing, nobody, or nowhere, I will generally use the construction $\sim(\exists x) \phi$.

There isn't even one thing that would make ϕ true.

A Brief Word About Nothing

In the Seinfeld case, we will let A = "... is about ---" and $S=$ "... is a show." Then let n denote the show Seinfeld. Then we can translate the sentence, "Seinfeld is a show about nothing," as follows:

$$
(S n \wedge \sim(\exists x) A n x)
$$

A Brief Word About Nothing

Lewis Carroll (aka Charles Dodgson) made comic use of nothing in Through the Looking Glass.

A Brief Word About Nothing

Lewis Carroll (aka Charles Dodgson) made comic use of nothing in Through the Looking Glass.

A Brief Word About Nothing

Lewis Carroll (aka Charles Dodgson) made comic use of nothing in Through the Looking Glass.

A Brief Word About Nothing

What is going on in the dialogue here? What makes the joke work?

A Brief Word About Nothing

What is going on in the dialogue here? What makes the joke work?

The king is treating the word "nobody" as a name.

A Brief Word About Nothing

What is going on in the dialogue here? What makes the joke work?

The king is treating the word "nobody" as a name.

But it isn't a name.

A Brief Word About Nothing

What is going on in the dialogue here? What makes the joke work?

The king is treating the word "nobody" as a name.

But it isn't a name. The word "nothing" does not designate any thing.

A Brief Word About Nothing

If nothing is not a name, then how should we translate sentences like, "Nobody walks slower than you do"?

A Brief Word About Nothing

If nothing is not a name, then how should we translate sentences like, "Nobody walks slower than you do"?

Let $\mathrm{W}=$ " ... walks slower than ..."

A Brief Word About Nothing

If nothing is not a name, then how should we translate sentences like, "Nobody walks slower than you do"?

Let $\mathrm{W}=$ ".. walks slower than ..."

Let c name the person indexed by "you."

A Brief Word About Nothing

If nothing is not a name, then how should we translate sentences like, "Nobody walks slower than you do"?

Finally, let $\mathrm{P}=$ "... is a person."

A Brief Word About Nothing

If nothing is not a name, then how should we translate sentences like, "Nobody walks slower than you do"?

$$
\sim(\exists x)(P x \wedge W x c)
$$

Models

In zeroth-order logic, we used truth tables to describe all the truth-values that various sentence could take on.

We then used truth tables to test arguments for validity.

Models

In zeroth-order logic, we used truth tables to describe all the truth-values that various sentence could take on.

We then used truth tables to test arguments for validity.

We treated each row in a truth table as a possible world.

Models

Truth tables won't work for us in first-order logic. The possible worlds are too complicated!

In first-order logic, instead of truth tables, we use small worlds.

Models

A small world is a freely chosen finite collection of constant terms together with their predicates and relations.

Small worlds are free constructions with only one constraint: they have to be non-empty.

Models

A small world is a freely chosen finite collection of constant terms together with their predicates and relations.

For example, we might describe a small world in which we have three constants (a, b, and c), two predicates (M and N), and one two-place relation (R).

Models

We can represent predicates and relations by writing down some constant terms and then using closed curves and directed graphs:

$$
\mathrm{a}
$$

Models

We can represent predicates and relations by writing down some constant terms and then using closed curves and directed graphs:

Models

We can represent predicates and relations by writing down some constant terms and then using closed curves and directed graphs:

Models

We can represent predicates and relations by writing down some constant terms and then using closed curves and directed graphs:

Models

A small world is a free construction in the sense that we specify how the predicates and relations in the small world apply or fail to apply to the constants in that world.

Models

If a sentence is true with respect to a small world, then we say that the small world is a model of the sentence.

Let's consider a simple example of a small world.

Models

We may represent our example small world with a diagram, like this:

Models

Our example small world is a model of the sentences \sim Pc, $(\exists x)$ Px, and $(\exists x)(\exists y) R x y$.

Models

Our example small world is a model of the sentences \sim Pc, $(\exists x)$ Px, and $(\exists x)(\exists y) R x y$.

Models

We will sometimes use the following notation. Let \mathscr{M} be a small world, and let ϕ be a sentence. If \mathscr{M} is a model for ϕ, then we write:

$$
\left\} \vDash_{m} \phi\right.
$$

Models

If every \mathbb{M} is a model for ϕ, then we remove the subscript, \mathscr{M}, and we write:

$$
\} \vDash \phi
$$

Models

A small world \mathscr{M} is a model for some collection of sentences just in case \mathbb{M} is a model for every sentence in the collection.

Validity

We are now going to use small worlds to give an account of validity for first-order logic.

Validity

In zeroth-order logic, we said that an argument is valid if its conclusion is true whenever its premisses are all true.

Our account of validity in first-order logic is very similar.

Validity

Let $\Gamma=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ be a collection of sentences. An argument from Γ to ϕ is valid in first-order logic just in case for every small world \mathcal{M}, if \mathbb{M} is a model of Γ, then \mathbb{M} is a model of ϕ.

$$
\Gamma \vDash \phi
$$

Validity

If $\Gamma=\{ \}$, also denoted \varnothing, then we call ϕ a logical truth. Some writers call ϕ a valid formula, but we are going to reserve the term "valid" to describe arguments.

$$
\varnothing \vDash \phi
$$

Validity

Unlike in zeroth-order logic, we do not have a mechanical procedure for checking the validity of an argument in first-order logic. However, we will sometimes construct small worlds to show invalidity.

Validity

Unlike in zeroth-order logic, we do not have a mechanical procedure for checking the validity of an argument in first-order logic. However, we will sometimes construct small worlds to show invalidity.

How would such a construction go?

Validity

Let's show that the following argument is not valid:
$\{(\exists x) F x\} \neq(\forall x) F x$

Validity

Let's show that the following argument is not valid:

$$
\{(\exists x) F x\} \neq(\forall x) F x
$$

We need to find a small world that is a model of $(\exists x)$ Fx but not a model of $(\forall x) F x$.

Validity

When looking for an appropriate small world, start with a single constant and work up in number.

Validity

When looking for an appropriate small world, start with a single constant and work up in number.

In this case, a single constant isn't enough. So, we'll add a second constant.

Validity

With two constants, we can distinguish between the existential and universal quantifiers.

Next Time

We will start thinking about proof theory for first-order logic.

