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Abstract

We connect the problem of variable choice to the so-called Bertrand

Paradox. We begin with a neglected argument by C.S. Peirce against con-

ceptualism, or what we now call “objective Bayesianism.” Peirce skewers

the conceptualist on a dilemma. Either the conceptualist will not be able

to learn from her evidence or she will have to endorse a contradiction.

In the argument for the second horn of his dilemma, Peirce produces an

instance of Bertrand’s Paradox. We consider a version of the Paradox

from White (2010) and his argument that the Principle of Indifference is

unnecessary to generate Bertrand-style problems. We generalize these ar-

guments and show that any non-trivial partition of the event-space has a

paradox-generating counterpart. We observe that partitions are essential

to variable definitions and argue that the problem of variable choice—

previously thought only a problem for interventionists—is in fact a prob-

lem for everyone.
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1 Introduction

Anyone who wants to build a model of the world has to decide how to carve

things up. In causal modeling, one carves things up by selecting a set of variables

and determining the structural relations among them. Hence, causal modelers

face the problem of how to choose a set of variables relevant for understanding

whatever system they happen to be investigating. Woodward (2016) challenges

causal modelers to provide criteria for solving this problem of variable choice

and specifying how the set of variables ought to be chosen.

In this paper we connect the problem of variable choice to the so-called

Bertrand Paradox and to the problem of induction. We begin in Section 2 by

considering an argument offered by C.S. Peirce against what he calls “conceptualist”—

and we would now call “objective Bayesian”—accounts of probability and statis-

tical inference. Peirce skewers conceptualists on the horns of a dilemma. Either

the conceptualist will not be able to learn from her evidence or she will have to

endorse a contradiction. In the argument for the second horn of his dilemma,

Peirce produces an example of what is now called Bertrand’s Paradox. In Sec-

tion 3, we consider Roger White’s take on the paradox and his argument that

the Principle of Indifference (POI) is unnecessary to generate Bertrand-style

problems. We generalize the Peirce and White arguments in Section 4, by show-

ing that any non-trivial partition of the event-space has a Bertrand-generating

counterpart. Finally, in Section 5, we observe that since a partition defines a

random variable, the Peirce-Bertrand paradox raises a challenge for objective

variable choice that is similar to (or perhaps just an instance of) the problem

of induction.

Before we get to the main parts of the paper, however, we want to make a

few notes about the Bertrand Paradox and its target. When we start out inves-

tigating a new domain, we know very little, if anything, about it. Such severe
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ignorance could paralyze us. How can we ever get started? One traditional

proposal for systematically moving ahead in the face of overwhelming ignorance

is expressed by the following:

Principle of Indifference (POI): If your evidence equally supports each of

several propositions, then assign the same probability to each.1

The POI continues to be the subject of considerable controversy. One stan-

dard argument against the POI is fueled by Bertrand’s Paradox, which shows

that in some cases there are several mutually incompatible ways to assign prob-

abilities over events, each of which is correct according to a naive application

of the POI. One reason to continue thinking about Betrand-like challenges to

the POI is that the same basic difficulty arises for causal modelers in the guise

of the variable choice problem. In cases of total (or near total) ignorance, we

do not know how to carve up the world in a way that supports reliable causal

inference. Now on to the details.

2 Peirce’s Challenge to the Conceptualists

In his 1883 paper, “A Theory of Probable Inference,” C. S. Peirce elaborates on

an argument that he gave in Peirce (1878) against the conceptualist approach

to probability and statistics. The problem Peirce poses is as follows.

Consider an arbitrary binary event-type, E. On any given trial E either oc-

curs or fails to occur, which we encode with 1 and 0, respectively. We represent

sequential observations of occurrences or failures as a string of 1s and 0s. For an

observation of n trials En is the event-space of all possible outcomes. For exam-

ple, if there are three trials, then E3 = {000, 001, 010, 011, 100, 101, 110, 111}.
1For alternative definitions and discussions of the POI, see Bayes et al. (1763) (but confront

Stigler (1982) for an argument that Bayes does not endorse the principle of indifference),
Laplace (1774/1986), Keynes (1921, p. 41-42), Barnard (1958), Jaynes (1973), Norton (2008),
Bangu (2009), Novack (2010), Vineberg (2011, p.713), Rinard (2014, p. 110), Pettigrew (2016,
p. 1), Smithson (2017, p. 255), and Williamson (2018, pp. 560-563).
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How should we assign probabilities to these outcomes in situations of total ig-

norance?

Peirce considers the principle: “if nothing whatever is known about the

frequency of occurrence of an event, then any one frequency is as probable as

any other.”2 He identifies two ways of proceeding, which form the horns of

a dilemma. On the first horn, the conceptualist assigns equal probabilities to

each outcome in the event-space but consequently cannot learn from experience.

On the second horn, the conceptualist assigns equal probabilities to the possible

frequencies of some occurrence but consequently endorses a logical contradiction.

Here is a concrete example.

Suppose we have a coin of unknown bias. We flip it three times and observe

that it lands heads each time. If we flip the coin again, what is the probabil-

ity that we will observe heads again? The conceptualist recommends that we

proceed by conditionalization as follows:

Pr(1111|111) =
Pr(111|1111)Pr(1111)

Pr(111)

Since Pr(111|1111) = 1, the conceptualist only needs to determine the values

of Pr(111) and Pr(1111). But how?

The conceptualist could assign equal probabilities to each of the possible

outcomes: what Peirce (following Boole) calls “constitutions of the universe.”

This is the first horn. For a sequence of length three, there are eight possible

outcomes—000, 001, 010, 100, 011, 101, 110, 111—and each is assigned probabil-

ity 1
8 . Hence, Pr(111) = 1

8 . For a sequence of length four, there are sixteen

possible outcomes, and each is assigned probability 1
16 . Hence, Pr(1111) = 1

16 .

Updating by conditionalization results in a posterior probability of 1
2 , and

we would obtain the same result, 1
2 , if we calculated the probability of 1,000

2Peirce (1883, p. 172)
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heads given 999 so far. Proceeding in this way, the conceptualist cannot learn

from experience: regardless of her evidence, she will say that seeing heads on

the next flip has probability 1
2 .3

We think it is helpful to read the first horn of Peirce’s dilemma as making

Hume’s inductive skepticism formally precise in conceptualist terms. Recall that

according to Hume (1748, 7.2.58):

There appears not, throughout all nature, any one instance of con-

nexion which is conceivable by us. All events seem entirely loose and

separate. One event follows another; but we never can observe any

tie between them. They seem conjoined, but never connected.

We take it that assigning equal probability to each distinguishable outcome

of an experiment—each constitution of the universe—is formally to make all of

the outcomes loose and separate. On the first horn, every outcome resembles

every other outcome to the exact same degree. We can’t, on this horn of the

dilemma, associate any impression with any other impression since there is

nothing in our experience or in our reason that genuinely connects them. Thus,

when we attempt to use Bayes’ theorem to update our beliefs on the basis of

our experiences we find that we are perfect inductive skeptics! The first horn is

unacceptable. But as we’ll see, the second horn is worse.

On the second horn of the dilemma, the conceptualist assigns equal probabil-

ities to particular frequencies of outcomes. The difficulty for the conceptualist

is determining precisely which frequency is the appropriate one. Peirce writes:

“It will be seen that different frequencies result some from more and some from

3In Chapter 20 of his Investigations of the Laws of Thought, Boole argued for the first
horn of Peirce’s dilemma, explicitly drawing the conclusion that “past experience does not in
this case affect future expectation” (1854, 371-372). In his Treatise on Probability, Keynes
(1921, 50, note 3) incorrectly claimed that Peirce had endorsed the idea of assigning equal
probabilities to all constitutions of the universe. Carnap (1952, 39-40) cited Keynes’ claim
without correcting the error and went on to note that the rule leads to unacceptable results.
See Fitelson (2006a,b) for more discussion of the problem.
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fewer different “constitutions of the universe,” so that it is a very different thing

to assume that all frequencies are equally probable from what it is to assume

that all constitutions of the universe are equally probable.”4 Consider the fol-

lowing two options.

First, we could count the frequency of 1s in a sequence. We represent these

frequencies in Figure 1.

F0,3 F1,3 F2,3 F3,3

000 001 011 111
010 101
100 110

F0,4 F1,4 F2,4 F3,4 F4,4

0000 0001 0011 0111 1111
0010 0101 1011
0100 1001 1101
1000 0110 1110

1010
1100

Figure 1: Frequency of heads for three trials (FX,3) and four trials (FX,4).

If we assign equal probabilities to these frequencies Pr(000) = Pr(001∨010∨

100) = Pr(011 ∨ 101 ∨ 110) = Pr(111) = 1
4 and Pr(0000) = Pr(0001 ∨ 0010 ∨

0100 ∨ 1000) = . . . = Pr(1111) = 1
5 then we obtain the posterior probability

Pr(1111|111) = Pr(1111)
Pr(111) = 4

5 . The conceptualist now appears to be learning

from experience, which seems like an improvement. But there is a problem. As

Peirce points out, there are many possible constitutions of the universe, and

we cannot consistently assign equal probabilities to the frequencies of all such

constitutions at once. To see this, consider the frequency of changes internal to

a sequence, such as from a run of 0s to a run of 1s, as shown in Figure 2.

On this way of carving things up, Pr(0000) = Pr(0101) = 1
8 , P r(1000) = 1

24 ,

etc. We could stop at this point, observe that 1
8 6=

1
5 , and conclude that the two

ways of assigning probabilities are inconsistent. But Peirce goes one step further

and returns to the inference problem. What will the two ways of carving things

up say about the probability that the next flip will come up heads? Dividing up

4Peirce (1883, p. 173)
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C0,3 C1,3 C2,3

000 001 010
111 100 101

110
011

C0,4 C1,4 C2,4 C3,4

0000 0001 0010 0101
1111 0011 0100 1010

0111 0110
1110 1001
1100 1011
1000 1101

Figure 2: Frequency of changes for three trials (CX,3) and four trials (CX,4).

the event-space by number of heads gives us a posterior probability of 4
5 whereas

dividing it up by number of changes gives us 3
4 . Applying the POI in this way

leads the conceptualist to endorse a contradiction.

3 The Multiple Partitions Problem

What has gone wrong? Peirce and others have thought that cases like this

illustrate a problem with the Principle of Indifference.5 However, White (2010)

has a beautiful little argument that the problem has nothing special to do with

the Principle of Indifference. White’s argument is based on consideration of a

slightly different example from van Fraassen (1989).

White (2010) calls his example Mystery Square:6

A mystery square is known only to be no more than two feet wide.

Apart from this constraint, you have no relevant information con-

cerning its dimensions. What is your credence that it is less than

one foot wide? (p. 164)

White says we have no more reason to suppose the square is less than one

5Sometimes called the Principle of Insufficient Reason.
6In van Fraassen (1989), the example involves cubes: “Consider a factory that produces

cubes with edge lengths of no more than two meters. A cube from the latest batch is selected.
What should your credence be that the cube has an edge length of less than one meter?
Likewise, what should your credence be regarding the face area or volume of the cube?” See
van Fraassen (1989, pp. 302–307) for this and other examples.
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foot wide than that it is more than one foot wide, or that its area is less than

1 square foot, or between 1 and 2 square feet, and so on. These options are

represented in Figure 3.

Edge Length
L1: 0m < length ≤ 1m
L2: 1m < length ≤ 2m

Face Area
A1: 0m2 < area ≤ 1m2

A2: 1m2 < area ≤ 2m2

A3: 2m2 < area ≤ 3m2

A4: 3m2 < area ≤ 4m2

Figure 3: Two partitions over the set of possible squares.

White defines evidential symmetry as follows. For any two propositions X

and Y , say that X is evidentially symmetric to Y , denoted X ≈ Y , for some

agent if the agent’s evidence offers no more support to X than it does to Y and

vice versa. Given his definition, White formalizes the POI as shown in 1.

X ≈ Y → Pr(X) = Pr(Y ) (1)

Plausibly, each partition in Figure 3 is equally legitimate. However, when

we attempt to assign probabilities to these partitions we find that we can’t do

so in a consistent way. White sets out an argument via contradiction to this

effect (Figure 4).

(A1) L1 ≈ L2 (premise)

(A2) A1 ≈ A2 ≈ A3 ≈ A4 (premise)

(A3) Pr(L1) = 0.5 (from POI, A2)

(A4) Pr(A1) = 0.25 (from POI, A3)

(A5) L1 = A1 (equivalence)

(A6) ∴ Pr(L1) = Pr(A1) (contradiction)

Figure 4: White’s argument that POI leads to a contradiction

So far, we just have a variant on the Peirce-Bertrand paradox. But White

goes on to argue that we obtain a worrying result without the POI if we assume
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two plausible principles regarding evidential symmetries.

Transitivity: If X ≈ Y and Y ≈ Z, then X ≈ Z.

Equivalence: If two propositions are logically equivalent, then they are eviden-

tially symmetric.

With the principles of Transitivity and Equivalence, White derives something

seemingly absurd. The argument is given in Figure 5.

(B1) L1 ≈ L2 (premise)

(B2) A1 ≈ A2 ≈ A3 ≈ A4 (premise)

(B3) ∴ L1 ≈ A1 (by equivalence)

(B4) ∴ L2 ≈ (A2 ∨A3 ∨A4) (by equivalence)

(B5) ∴ A2 ≈ (A2 ∨A3 ∨A4) (by transitivity)

Figure 5: White’s Multiple Partitions Problem

The B-argument has the same premises as the A-argument, and it concludes

with what White calls an “obviously wrong” result. White’s proof does not rely

on the principle of indifference, but the premises appear likewise motivated by

symmetry reasoning. Each partition of possible outcomes seems “as good as the

other.”

But why think the result of the argument in Figure 5 is bad? The reasoning

seems to go something like this. Consider any two possible outcomes for some

event. If one possible outcome is a subtype of the other, then the two outcomes

cannot be evidentially symmetric. If they were, then we could conclude that

the difference between them is irrelevant. However, we cannot conclude that

the difference between them is irrelevant given our state of total ignorance.7

7Whether or not we are in a position to know X ⊂ Y depends on what we mean by being
in a state of “total ignorance” with respect to the question at hand. It appears that White
thinks our ignorance does not exclude our being in such a position.
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4 Generalization of the Problems

In this section we draw some general conclusions about the Bertrand paradox

from what we’ve seen so far. To do so, we will need some technical vocabulary

for understanding set partitions.

Partition: Consider a set E = {e1, . . . en}. A partition X on E is a collection

of subsets of E where8

1. If x ∈ X then x 6= ∅

2. If xi ∈ X and xj ∈ X then xi = xj or xi ∩ xj = ∅

3.
⋃

x∈X X = E

Refinement: Consider a set E = {e1, . . . en} and two partitions over E: X

and Y . X is a refinement of Y , denoted X � Y , iff ∀x ∈ X∃y ∈ Y : x ⊆ y. Call

X a strict refinement of Y , denoted X ≺ Y , if X 6= Y .

Partial Refinement: Let E = {e1, . . . , en} be a set with two partitions X and

Y . X is a partial refinement of Y , denoted X - Y , iff ∀x ∈ X∃y ∈ Y :
⋃n

i Xi =⋃m
j Yj 6= E

Complete Partition: A partition of a countable set is complete if each element

of the partition is a singleton set.

While there are many ways in which one partition may be a strict refinement

of another, a simple procedure for generating a partition Y that is a strict

refinement of another partition X is as follows. Begin with partition X and

then split at least one element of X into two disjoint, nonempty subsets. Any

new partition created this way is a strict refinement of the original.

If we assume that the event space is finite (E = {e1, . . . , en}), there is a fixed

number of partitions of E given by the Bell sequence.9 This sequence lists the

8This definition appears in Smith et al. (2014).
9OEIS Foundation Inc. (2019)
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number of unique partitions Bn for sets containing n elements. For any finite

set, there exists a partition and a refinement of that partition that will generate

a Bertrand paradox. Here is the proof.

Consider a partition X of E. For any partition of a finite set, either a strict

refinement of that partition exists or the partition is complete. So, for any non-

complete partition X a strict refinement Y ≺ X exists. Since X 6= Y , when we

assign probabilities uniformly over the elements in X and Y the probabilities

will be non-identical for some elements of X and Y .

(C1) X1 ≈ X2 ≈ . . . ≈ Xn

(C2) Y1 ≈ Y2 ≈ . . . ≈ Ym

(C3) ∀y ∈ Y (y ≈ (
⋃i+n

i Xi)) (by equivalence)

(C4) (yp ≈ (
⋃i+n

i xi)) (by instantiation)

(C5) (yq ≈ (
⋃j+m

j xj)) (by instantiation)

(C6) ∴ (
⋃i+n

i xi) ≈ (
⋃j+m

j xj) (by transitivity)

Figure 6: Generalized Multiple Partitions Problem

White’s case involves partitioning an uncountable event-space.10 In Mystery

Square White proposes two partitions of the size of the square: one based on

length and the other on area. He then assigns probability uniformly over the

two partitions L and A since each element of the partition is presumed to be

evidentially symmetric with each other element of its respective partition.

Because one partition refines the other—in this case A ≺ L—assigning prob-

abilities uniformly over these partitions generates a paradox. While a Bertrand

paradox is not generated for every possible pair of partitions, for any choice of

partition that is not complete there exists another partition such that the pair

generates a Bertrand paradox.

On the first horn of Peirce’s dilemma, we take the complete partition of the

event-space and uniformly distribute probability over every elementary event.

10This is also the case in Bertrand’s original statement of the paradox.
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As we’ve seen, doing so makes learning from experience impossible. Thus,

Peirce’s argument has shown that learning is impossible if you assign proba-

bility uniformly over the complete partition of the event space.

On the second horn of the dilemma, Peirce challenges the conceptualist

to identify which of the other possible partitions over the event-space is the

correct one. While he only considers two partitions, this horn shows that we

can’t rationally choose any partition, since for any non-complete partition there

exists a paradox-generating refinement.

Furthermore, neither of the partitions Peirce considers in his coin flip ex-

ample (number of heads and number of changes) are refinements of the other.

In fact, because partition C is only a partial refinement of partition F , Peirce’s

coin flip generates the same results as in White’s example for three flips but not

four.

(D1) F0,3 ≈ F1,3 ≈ F2,3 ≈ F3,3

(D2) C0,3 ≈ C1,3 ≈ C2,3

(D3) C0,3 ≈ (F0,3 ∨ F3) (by equivalence)

(D4) (C1,3 ∨ C2,3) ≈ (F1,3 ∨ F2,3) (by equivalence)

(D5) C1,3 ≈ (C1,3 ∨ C2,3) (by transitivity)

(D6) ∴ (C0,3 ∨ C1,3) ≈ (C0,3 ∨ C1,3 ∨ C2,3) (by symmetry preservation)

Figure 7: White’s argument applied to three coin flips

No choice of partition is worry free. A complete partition does not result in

contradiction, but it also doesn’t support learning. But partitions that are not

complete endorse outright contradictions (of the Bertrand variety) or absurdities

(of the White variety).
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5 The Variable Choice Problem

So far we’ve seen a generalization of the Bertrand paradox according to which

any event space can be partitioned and that partition given a refinement that

will generate a paradox. In this section we connect Bertrand’s paradox to the

problem of variable choice.

Woodward (2016, p. 1048) states the problem as follows: “[Consider] a situ-

ation in which we can construct or define new previously unconsidered variables

either de novo or by transforming or combining or aggregating old variables,

and where our goal is to find variables that are best or most perspicuous from

the point of view of causal analysis / explanation.” The worry, for Woodward,

is that while this is a task which all modelers must accomplish there is nothing

systematic to be said about how best to perform it.

There are two ways to understand the variable choice problem, depending on

what we think a variable is. On one understanding a variable is just a property

that relates to some piece of mathematics. The problem of variable choice then

becomes the problem of determining which properties we ought to include in our

model. Another way of understanding variables is as a particular representation

of a property. In that case, the problem of variable choice becomes a problem of

how to represent properties, rather than which properties to choose in the first

place.

Consider the following problem. Suppose we are interested in the relation-

ship between smoking behavior and the appearance of lung cancer in later life.

A simple way of proceeding would be to define two variables (corresponding to

our two properties) that take a binary value (smoked/has never smoked and has

lung cancer/no lung cancer). On the first reading, we ask which other proper-

ties might be relevant in this context (such as occupation, etc.). On the second

reading, we ask whether binary values are sufficient for our model. Perhaps the
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‘smoking’ variable should take an integer value that corresponds to the total

cigarettes smoked, or a real value that corresponds to the average number of

cigarettes smoked per week, etc. Likewise for the ‘Lung Cancer’ variable. Be-

fore we even collect data we will need to know the possible values that these

variables can take.

The process of identifying variables necessarily involves partitioning our ob-

servations in some way. But as we’ve seen, there is no worry-free way to do

so in a state of ignorance. An easy skeptical argument follows. We begin in a

state of ignorance. But there is no worry-free way to identify variables in such

a state. If so, then we should be suspicious that any model gets the “correct”

partition of the world.11

6 Conclusion

In this paper we considered some of the history of Bertrand’s paradox and

the way variations on the paradox have been used to challenge the POI. We

generalized arguments developed by Peirce and White, and we connected these

Bertrand-like paradoxes to the problem of variable choice. We then presented a

skeptical challenge to modelers (especially but not exclusively causal modelers)

who need to carve the world into parts in order to make reliable inferences.
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