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Abstract. We want our theories to be constrained by the data. We want them to 

have good fit. Statistical procedures that rely on a measure of how well a model 

fits some data are ubiquitous in the sciences. But there are many possible 

measures of fit. Why choose one measure of fit over its competitors? One might 

hope to find a purely epistemic justification for one’s choice of fitting function. 

But I will argue that no purely epistemic reasons for choosing a fitting function 

can be given. We choose to adopt the fitting functions we do, not because they are 

epistemically justified, but because they are pragmatically attractive. 
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On Goodness of Fit 

 

Not so very long ago, I was talking about statistics with a friend from the psychology 

department. “Everything is regression,” my friend told me. Here is what I think she had in mind. 

Whenever we collect data in order to test a theoretical model, we measure the fit of the model to 

the data. When we assess the predictive accuracy of a model, we measure how well the model’s 

predictions fit our observations. And when we select a specific model from a family, we select 

the one that best fits the observations. We want our theories to be constrained by the data. We 

want them to have good fit. Statistical procedures that rely on a measure of how well a model fits 

some data are ubiquitous in the sciences. But there are many possible measures of fit. Why 

choose one measure of fit over its competitors? One might hope to find a purely epistemic 

justification for one’s choice of fitting function. But I will argue that no purely epistemic reasons 

for choosing a fitting function can be given. We choose to adopt the fitting functions we do, not 

because they are epistemically justified, but because they are pragmatically attractive. 

 Consequently, statistical procedures used across the sciences—from the hardest of the 

physical sciences to the softest of the human sciences—are pragmatically encroached. And as a 

result, science itself stands on practical feet of clay. So as to be clear up front, my basic argument 

goes like this: 

[L1] Every plausible reason for choosing a measure of fit is pragmatic. 

 

[L2] If [L1], then statistical procedures used across the sciences are 

 pragmatically encroached. 

 

[L3] If statistical procedures used across the sciences are pragmatically 

 encroached, then science is pragmatically encroached. 

 

----------------------------------------------------------------------------------------- 

 

[L4] Science is pragmatically encroached. 
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Here is how I proceed. In Section 1, I introduce two simple, historically interesting measures of 

fit. In Section 2, I motivate [L1] by considering some reasons commonly offered by statisticians 

and related researchers for choosing a measure of fit. In Section 3, I offer a principled argument 

for [L1] based on the idea that any epistemic argument for choosing a measure of fit would be 

viciously circular. In Section 4, I argue for [L2]. In brief, if [L1] is correct, then every instance of 

estimation, testing, or model selection carries with it some pragmatic commitment. Hence, for 

any statistical procedure, there will be some change in pragmatic commitments that will change 

its deliverances. In Section 5, I argue for [L3]. Science rides on the back of estimation, testing, 

and model selection. Hence, science cannot get very far without pragmatic commitments. 

Finally, in Section 6, I make some concluding remarks and compare my position with Douglas’ 

(2000) account of inductive risk and values in science. 

 

1. Groundwork 

 

Two simple approaches to measuring goodness of fit have figured prominently in the history of 

statistics: least absolute error and least square error.1 According to the least absolute error 

approach, the fit of a model is assessed by summing the absolute values of the differences 

between the observed data-values and the values delivered by the model. A model has better fit 

than a competing model if the sum of its absolute errors is smaller than the sum of the absolute 

errors of its competitor. According to the least square error approach, the fit of a model is 

assessed by summing the squared values of the differences between the observed data-values and 

the values delivered by the model. A model has better fit than a competing model if the sum of 

its squared errors is smaller than the sum of the squared errors of its competitor. 

                                                 
1 See Portnoy & Koenker (1997) for an introduction to the statistical debate. For historical details in the linear case, 

see Farebrother (1999). For a nice comparison of some more-recent alternatives as applied to generalized curve-

fitting problems, see Chapter 9 of Birkes & Dodge (2011). 



3 

 

 Now, consider a simple curve-fitting problem. Suppose we have a two-dimensional 

scatterplot of data points, and we want to fit a straight line to the data.2 The best-fitting model 

according to the standard of least absolute error may differ in important ways from the best-

fitting model according to the standard of least square error: especially when there are outliers or 

when the noise has a distribution with heavy tails. Figure 1 shows a concrete example using data 

on income inequality and infant mortality.3 

 
Figure 1 

 

                                                 
2 See Glymour (1980), Forster & Sober (1994), and Spanos (2007) for discussions of the problem of selecting the 

appropriate family of curves in problems like this one. 
3 For a more politically neutral example, see Prescott (1975). 
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The blue line represents the preferred linear model as judged by the standard of least absolute 

error, and the red line represents the preferred linear model as judged by the standard of least 

square error. Singapore, with its extreme inequality and universal healthcare is an outlier that 

exerts considerable influence on the least squares error line (in red) but very little influence on 

the least absolute error line (in blue). 

 In estimation tasks for one-dimensional quantities, like estimating the speed of light or 

the charge of an electron, the least absolute error approach is equivalent to taking the median and 

the least square error approach is equivalent to taking the mean. As with the curve-fitting 

example, the absolute error approach (median) is less sensitive to outliers than is the square error 

approach (mean). If our estimates only have to be very approximately correct, then the difference 

between using the mean and using the median might not matter. But if we need to be very 

precise, the differences will often be meaningful. 

 Here is an illustration. In 1882, Simon Newcomb used the method of Foucault to make 

several measurements of the time that light took to travel a distance of 7,442 meters.4 In Figure 

2, I have reproduced Newcomb’s measurements, which are given by replacing M in the 

expression M × 10-3 + 24.8 with the values in my figure, where the result is in units of millionths 

of a second. 

                                                 
4 See Stigler (1977) for Newcomb’s data (in Table 5 of the appendix) along with a fascinating discussion of applying 

different estimation techniques to old data sets. 
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Figure 2 

 

Newcomb used his measurements of the time of passage to estimate the speed of light. Using the 

mean (26.2), we get an estimate for the speed of light equal to 299,763,813 meters per second. 

Using the median (27), we get an estimate of 299,754,300 meters per second. The difference is 

surely trivial for most applications, but for some applications, such as estimating the output of a 

nuclear reaction or carrying out radio communications with deep space probes doing delicate, 

time-sensitive operations, the difference might be important. 

 Model selection techniques offer another example. An information criterion, such as the 

Akaike information criterion (AIC) or the Bayes information criterion (BIC), can be expressed as 

the sum of a term giving the measure of fit and a term penalizing a model based on its degree of 

complexity. Both the AIC and the BIC use square error in the goodness of fit term. They differ in 
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the penalty term, with AIC using the penalty term 2𝑘 𝑛⁄  and BIC using the term 
𝑘 ∙ 𝑙𝑛(𝑛)

𝑛⁄ , 

where k is the number of free parameters in the model and n is the sample size. If we use the 

same penalty terms with an absolute error fitting function, we get different results in some cases. 

Consider an application to Hald’s cement data (a standard test-case for model selection 

techniques). The problem is to model the heat evolved in the hardening of cement as a linear 

function of the percentage weight of various chemicals that the cement contains. The Hald data 

set includes four predictor variables, denoted here by X1, X2, X3, and X4, where: 

 X1 is the percentage weight of 3CaO.Al2SO3. 

 X2 is the percentage weight of 3CaO.SiO2. 

 X3 is the percentage weight of 4CaO.Al2O3.Fe2O3. 

 X4 is the percentage weight of 2CaO.SiO2. 

 

If one uses least square error with the AIC penalty term in the usual way, the model selected is 

0 1 1 2 2 4 4y X X X         . And if one uses least square error with the BIC penalty term in 

the usual way, the model selected is 0 1 1 2 2y X X       . But if one uses least absolute 

error, the model selected is 0 1 1 2 2 3 3y X X X         , regardless of whether one uses the 

AIC penalty term or the BIC penalty term. 

 

2. Reasons for Selecting a Measure of Model Fit 

 

What reasons might one give for preferring one measure of model fit over another? In this 

section, I consider four reasons given in the statistics and econometrics literatures: (1) the fitting 

function has some mathematical or computational virtues that its competitors lack; (2) the fitting 

function is the unique function that minimizes one’s losses in the long run; (3) the fitting 

function is the most efficient one; and (4) the fitting function is more robust than its competitors 

to model misspecification. In this section, I argue that each of these reasons is pragmatic, not 

epistemic. 
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2.1 Mathematical or Computational Tractability 

 

One appealing constraint on the choice of fitting function is mathematical or computational 

tractability. Historically, least square error was preferred because the optimization problem one 

faces when one uses least square error has an analytic solution; whereas, the problem one faces 

when one uses least absolute error requires numerical methods. More recently, the discussion has 

shifted to computational tractability, since computers solve both sorts of problems using 

numerical methods. 

 But what connection is there between our practical ability to solve a problem and the 

resulting solution’s closeness to the truth? Does our having an easier time generating a solution 

confer greater epistemic justification on the solution? Prima facie, the answer is no. The fact that 

we have an easier time computing some function does not make it epistemically superior. One 

might try to resist this initial impression by suggesting that calculations having significantly less 

difficulty are correspondingly more epistemically secure. We are more likely to get the correct 

answer if the calculation is easy than if it is difficult. However, the reply is misguided. Correctly 

computing a function is not the same thing as computing a correct function. 

 Alternatively, one might argue that by using a computationally efficient method, one may 

get close to the truth for many different problems; whereas, using an inefficient method would 

mean that one misses out on the truth about other problems. I see two difficulties with this line of 

reply. First, there does not seem to be any way to say how close to the truth is close enough 

without knowing the purpose of solving the problem. But the point of solving a problem—the 

goal being set—is a pragmatic consideration. Hence, adopting an efficient method in order to get 

close to the truth on several problems presupposes a pragmatic criterion. The idea of getting 

close enough to the truth is by its nature to get close enough for practical purposes. Second, since 
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closeness to the truth is exactly the notion under consideration, one cannot appeal to it without 

vicious circularity. Consequently, my imagined critic would need to replace the goal of getting 

close to the truth on many different problems with something like, “Yielding more answers that 

have good-making feature [x].” But what could play the role of good-making feature [x] is not 

obvious. 

 

2.2 Loss Minimization 

 

When one faces a problem involving estimation, an appealing constraint on the choice of fitting 

function (and by extension, estimator) is that one’s choice should minimize expected losses in 

the long run. Different loss functions (which are, effectively, utility functions) correspond to 

different fitting functions. Least square error is preferable if one has a squared error loss 

function; whereas, least absolute error is preferable if one has an absolute error loss function. But 

loss functions have to do with an agent’s aims and attitudes towards different varieties of risk or 

error. Considerations of risk are quintessentially pragmatic considerations. Hence, choosing a 

fitting function on the basis of one’s loss function is to choose a fitting function for a pragmatic 

reason. 

 Two agents who come to a problem with different loss functions (and hence, solve the 

goodness of fit problem in different ways) face a disagreement that cannot be settled by appeals 

to shared epistemic norms or by appeals to additional data. Someone who endorses the square 

error fitting function cannot be persuaded on the basis of data to move to absolute error. By her 

own lights, her model—fit according to her measure of goodness of fit—is as good as is possible. 

By her opponent’s lights, some other model has better fit. If their disagreement has any content 

at all, it is in virtue of some difference in their aims or desires. Hence, the source of their 

disagreement must be pragmatic—having to do with their aims or purposes. But if so, the choice 
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of fitting function must itself by pragmatic in character. We see here a connection between 

relativism and pragmatism that ought to be obvious to people familiar with Peirce’s discussion of 

methods for fixing belief. 

 

2.3 Statistical Efficiency 

 

Let T1 and T2 be estimators for a parameter θ. In general, T1 and T2 will have different variances 

with respect to their estimates of θ. An estimator with smaller variance requires fewer 

observations to reach a given level of certainty. Hence, an appealing idea is to choose the 

estimator that minimizes the variance in its estimates of θ. 

 Initially, efficiency might look like a good candidate for an epistemic reason to choose 

one fitting function over another. However, there are three reasons to think that efficiency is a 

pragmatic reason for choosing a fitting function. First (and most importantly), evaluations of 

relative statistical efficiency depend on one’s choice of loss function. In the standard case, we 

adopt squared error loss and get the mean squared error as the criterion for judging efficiency. 

But such a choice is in no way forced. By adopting a different loss function, we could get a 

different criterion for judging efficiency. If so, then considering the relative efficiencies of some 

fitting functions provides a pragmatic reason for one’s choice. 

 Second, one may rationally choose the more efficient of two consistent estimators only if 

one does so on the basis of considerations of time, money, energy, or the like. If one chooses an 

option on the basis of considerations of time, money, energy, or the like, then one’s choice is 

pragmatic, rather than epistemic. Hence, if one’s choice of the more efficient of two consistent 

estimators is rational, then one’s choice is pragmatic, rather than epistemic. 

 Third, pairs of estimators (like the mean and median) have different relative efficiencies 

with respect to different distributions for the parameter being estimated. For example, the 
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relative efficiency of the mean to the median is about 1.57 for the normal distribution, but it is 0 

for the Cauchy distribution. As a result, efficiency opens itself up to practical trade-offs between 

the size of the sample one wants to draw and the sensitivity one wants to have to one’s modeling 

assumptions. But sensitivity to one’s modeling assumptions is a kind of risk that one takes. Thus, 

efficiency comes down to a choice between two costs: the cost of drawing a sample and the cost 

of being wrong about one’s modeling assumptions. Hence, efficiency is a pragmatic reason for 

selecting a fitting function. 

 

2.4 Robustness 

 

Since the distribution of a parameter affects the relative efficiency of estimators for it, 

researchers sometimes choose a fitting function so that it will not be too sensitive to violations of 

the modeling assumptions. An estimator that has good relative efficiency over a wide class of 

modeling assumptions is robust. Modelers sometimes appeal to the robustness of an estimator in 

order to justify selecting it over its competitors. As I have argued above, efficiency is a 

pragmatic consideration. Since the robustness of an estimator is deeply tied to its efficiency, one 

ought to think that considerations of robustness are also pragmatic. 

 In addition, there are two further reasons to think that robustness provides pragmatic (and 

not epistemic) reasons for choosing a fitting function. First, there is a circularity challenge. No 

estimator dominates every other estimator with respect to every set of modeling assumptions. So, 

we are going to have to do some sort of aggregating or weighted averaging. But that just raises 

again the question we started with: How do we measure the goodness of fit for some estimator? 

That is, we could take the estimator that has the best median fit or the best mean fit or is closest 

in absolute value to the truth most often or is farthest in absolute value from the truth least often 
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and so on. The reasons that one might bring to bear here again appear to be pragmatic. They are 

considerations about computational tractability, loss, and efficiency. 

 Second, the agent is still faced with a choice. For example, suppose the agent believes 

that the parameter has a normal distribution. The agent needs to choose between an estimator that 

is maximally efficient if her belief is correct but likely to be inefficient if her belief is incorrect 

and an estimator that is less efficient if her belief is correct but likely to still be adequately 

efficient if her belief is incorrect. One might think that this is a purely epistemic trade-off and 

hence does not show that there is any pragmatic encroachment. But an argument may be given 

here that is parasitic on examples used by Fantl and McGrath (2009) to support the claim that 

knowledge is pragmatically encroached in everyday cases. Imagine two agents, Sam and Betty. 

Betty wants to get an estimate that is no more than a specific distance from the truth. But she 

doesn’t care how precise the estimate is as long as it is within that tolerance. Hence, she selects 

an estimator that is very robust. Sam wants to have a good chance of getting a maximally precise 

estimate and is happy to tolerate being wildly wrong in a few cases. Perhaps he is willing to take 

the risk of being wildly inaccurate, since he thinks that being wrong will not be too serious. 

Hence, he takes an estimator that he judges most likely to be maximally efficient, even though it 

is fragile. 

 

3. No Epistemic Reasons 

 

In Section 2, I motivated premiss [L1] of my main argument by looking at four reasons that 

statisticians and econometricians sometimes give for choosing a specific measure for goodness 

of fit. Of course, researchers might have reasons that I haven’t considered, and for all I’ve said so 

far, there might be some non-pragmatic reasons for choosing a measure of fit that no one has 
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considered.5 Hence, my discussion in Section 2 should be regarded as providing a weak 

abductive argument designed to make [L1] worth investigating further. In this section, I defend 

the following principled argument for [L1]. 

[S1] A measure of fit defines what it is for a model or estimate to be 

 accurate. 

 

[S2] If [S1], then choosing a measure of fit cannot legitimately be 

 guided by the aim of maximizing accuracy. 

 

[S3] If there are any epistemic reasons for choosing a measure of fit, 

 then choosing a measure of fit can legitimately be guided by the 

 aim of maximizing accuracy. 

 

[S4] If there are no epistemic reasons for choosing a measure of fit, then 

 every plausible reason for choosing a measure of fit is pragmatic. 

 

----------------------------------------------------------------------------------------- 

 

[L1] Every plausible reason for choosing a measure of fit is pragmatic. 

 

 

Let me now give a gloss on the four premisses in the argument for [L1]. The first premiss is 

definitional (or nearly so). It says that accuracy is cashed out in terms of a measure of goodness 

of fit. The second premiss assumes that in order to be guided by the aim of maximizing accuracy, 

one needs to have some idea of what accuracy is. Either one has an account of accuracy in hand 

or one does not. If one has an account of accuracy, then using that account to guide one’s choice 

                                                 
5 Readers with a background in formal epistemology might think that philosophers in the “accuracy-first” tradition 

have provided a purely epistemic solution to our problem. After all, Joyce (1998) purports to give a non-pragmatic 

argument for probabilism. See also Leitgeb & Pettigrew (2010a, 2010b), Easwaran & Fitelson (2012), Moss (2011), 

and van Enk (2014). I have three reasons for thinking that the accuracy-first approach in formal epistemology does 

not provide a purely epistemic solution to our problem. First, some measures of fit that are plausibly ruled out in the 

context of defenses of probabilism cannot be ruled out in the same way in the context of our problem of goodness of 

fit in general statistical procedures. For example, the absolute error approach is ruled out in the accuracy-first 

tradition because an absolute error scoring rule is improper. But the analogous claim that a fitting function must be 

proper in order to be admissible seems entirely out of place in the setting of general measures of the goodness of fit 

of a model to data. Second, as Levinstein (2012) points out, plausible constraints on scoring rules admit competitors 

to the usual Brier score (itself equivalent to the square error approach). Third, there seem to me to be excellent 

arguments that the accuracy-first tradition cannot provide purely epistemic criteria for belief as it aims to do (see 

Levinstein 2019 and Mayo-Wilson & Wheeler 2019). 
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of a measure of accuracy is viciously circular. If one does not have an account of accuracy, then 

one cannot be guided by accuracy considerations. Either way, choosing a measure of accuracy 

cannot be legitimately guided by the aim of maximizing accuracy. 

 The third premiss assumes that there is an intimate connection between accuracy and 

epistemic reasons. The thought here is that epistemic reasons are primarily about getting at the 

truth, and getting at the truth makes sense if and only if one’s actions can be guided by 

considerations of accuracy. Hence, if it isn’t possible for one’s choice of a measure of fit to be 

guided by the aim of maximizing accuracy, then there aren’t any purely epistemic reasons one 

could call on to justify one’s choice. The fourth premiss assumes that our reasons are either 

epistemic or pragmatic.6 

 

4. Pragmatic Encroachment is Unavoidable in Estimation and Model Selection 

 

In Sections 2 and 3, I argued that every plausible reason for choosing a measure of fit is 

pragmatic. In this section, I want to defend the second premiss in my main argument, which says 

that if every plausible reason for choosing a measure of fit is pragmatic, then statistical 

procedures used across the sciences are pragmatically encroached. 

 The main thought here is that every instance of estimation, testing, and model selection 

requires commitment to some specific measure of fit. If every reason one might give for 

choosing that measure, specifically, is pragmatic, then every instance of estimation, testing, and 

model selection carries with it some pragmatic commitment. And if so, then there will always be 

some potential change to one’s pragmatic commitments that would make a difference to the 

                                                 
6 Perhaps this counts too many reasons as “pragmatic.” One might worry that aesthetic or ethical considerations can 

provide us with reasons that are neither epistemic nor pragmatic. But I don’t think that people who want to cleanly 

separate the epistemic from the pragmatic in order to defend the epistemic purity of the sciences are going to be 

comforted by learning that they can call on aesthetic or ethical considerations to justify their choice of fitting 

function. For an epistemic purist to reject [S4] would be straining out a gnat and swallowing a camel. 
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estimate one ought to endorse, to the result of one’s test, or to the model one ought to select in a 

given case. By extension, there will always be some changes in one’s pragmatic commitments 

that would make a given estimate (held constant) or a given test (held constant) or a given model 

(held constant) change its status (as correct or incorrect) or its verdict (as reject or not). If so, 

then differences in pragmatic commitments sometimes ground differences in whether an agent 

knows that something is the case, which is what is meant by “pragmatic encroachment.” Hence, 

statistical procedures used across the sciences are pragmatically encroached. What we know 

ultimately depends on the aims or purposes that lead to one’s choice of a measure of fit. 

 One might object that in some cases, different measures of fit lead to identical or nearly 

identical estimates, test results, or models. Hence, one should commit only to results that are 

recommended by procedures on every measure of fit. In practical cases where one has already 

significantly restricted the number of competing measures of fit, the thought here is sound. But 

in the general case, there are no estimates or models recommended by literally every measure. 

Hence, if one declines to endorse any estimate or any model unless it is recommended by every 

measure, one will never endorse any estimate or any model at all. 

 

5. Science is Pragmatically Encroached 

 

So far, I have argued that statistical procedures used across the sciences are pragmatically 

encroached. In this section, I argue that consequently, science is pragmatically encroached. 

Science rides on the back of estimation, testing, and model selection. Hence, science cannot get 

very far without pragmatic commitments. Here is the argument: 
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[S5] If statistical procedures used across the sciences are pragmatically encroached, 

 then tools essential to the development of scientific knowledge are pragmatically 

 encroached. 

 

[S6] If tools essential to the development of scientific knowledge are pragmatically 

 encroached, then science is pragmatically encroached. 

 

----------------------------------------------------------------------------------------- 

 

[L3] If statistical procedures used across the sciences are pragmatically encroached, 

 then science is pragmatically encroached. 

 

 

The thought behind [S5] is that science as we know it would not be possible without statistical 

tools that rely on measures of fit. Consider simple curve-fitting. Glymour (1980, 322) is simply 

poetic in his account of the historical importance of curve-fitting: 

A GREAT DEAL of the most basic scientific inference consists of the following sort of 

thing: an observer measures or calculates values for two (or more) quantities, and obtains 

a set of paired values; from these paired values he infers a functional relation between the 

quantities measured. Inferences of this kind can be found in perhaps the majority of 

experimental reports published in the physical sciences, and some of them constitute 

great steps in the history of science: Kepler's laws, Coulomb's law, the law of specific 

heats, various radiation laws, Hubble's law, the gas laws, and so on; the list of important 

relations argued for in this way is nearly endless. 

 

Of course, the oldest historical cases were not statistically sophisticated. But as datasets have 

grown both in terms of the number of statistical units observed and in terms of the number of 

variables measured, guesses constrained merely by implicit measures of fit stop being adequate 

for the advancement of science. Moreover, as Spanos (2007, 1059-1064) argues, implicit 

statistical modeling assumptions, including assumptions about proper measures of fit, are crucial 

to the vindication of even ancient curve-fitting enterprises, for it is precisely failures in the 

statistical modeling that vindicate Kepler’s model of the orbit of Mars as compared with 

Ptolemy’s. 
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 While it might be possible to have some kind of science without any estimation, theory 

testing, or model selection, it is hard to see how such a science could grow and develop in 

anything approaching the way in which our own science has grown and developed. If one were 

to excise estimation, testing, and model selection from the scientific enterprise as we have it 

today, the residue would not be recognizable to us as science. I am not attempting here to 

provide a demarcation criterion: I am only arguing for the necessity for science of broadly 

statistical procedures that make use of some measure of fit (perhaps implicitly). I am not arguing 

that the use of estimation, testing, and model selection are sufficient to make an inquiry 

scientific—though I am inclined to think that having more statistical and mathematical modeling 

is an indicator that an investigation is scientific (cf. Pigliucci 2013). Nor am I arguing that every 

activity in the scientific enterprise consists in estimation, testing, or model selection. The 

construction of scientific instruments, the collection of data, the invention of categorization 

schemes, and the proposal of structural accounts of natural phenomena are all examples of 

activities that are properly scientific in character but do not consist in statistical procedures. 

 I think [S6] is obvious, which I suppose is dangerous to admit. But it seems to me that if 

something essential to the growth and development of science as we find it is pragmatically 

encroached, then science itself is pragmatically encroached. A little yeast works through the 

whole dough. Summing up, then, I have defended all of the premisses in my main argument. 

Taken altogether, they deliver the conclusion that science is pragmatically encroached. 

 

6. Concluding Remarks on Inductive Risk 

 

Douglas (2000) argues that “because of inductive risk, or the risk of error, non-epistemic values 

are required in science wherever non-epistemic consequences of error should be considered” 

(559). In concluding, I want to make some brief remarks on the relationship as I see it between 
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my arguments for pragmatic encroachment by way of measures of goodness of fit and Douglas’ 

argument against the value-free ideal in science. To begin with, I agree with Douglas in thinking 

that the value-free ideal cannot be maintained in science. And I think that examples like hers 

could be used to good effect in illustrating points I have tried to make regarding statistical 

efficiency and robustness in Sections 2.3 and 2.4. But on my reading, Douglas is too modest in 

the degree to which science is infiltrated by considerations of practical value. She seems to think 

that non-epistemic virtues are only required in cases where practical decisions need to be made 

and where risk of error has real-world consequences. Although Douglas does not mention 

Neyman, her view of statistical testing seems to be essentially Neyman’s (1957) “inductive 

behavior.” A proponent of the value-free ideal might hold out hope that a Fisherian approach 

embracing full-blooded scientific inference and not just decision-making might deflect or evade 

the force of Douglas’ arguments. But if I am right, challenges to the value-free ideal do not 

depend on Neyman’s account of statistical testing or anything similar. It seems to me that non-

epistemic values go deeper than one might suppose on the basis of Douglas’ arguments, and I 

hope that my arguments will be understood as cutting deep enough to expose the pragmatist 

bones holding up the body of scientific knowledge. 
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