PHIL 103: Logic and Reasoning QRII

Practice #3 Solutions

	T .1.1			· (D	\sim 1/ \sim	D)
	In this	exercise	we are	comparing $(P \rightarrow$	(<i>Q</i>) and ($\sim Q \rightarrow \sim$	$\sim P$
т.	in this	enercise,	weare	comparing (1 '	\mathcal{L} and \mathcal{L}	1)

Р	Q	$\sim Q$	~P	$(\sim Q \rightarrow \sim P)$	$(P \rightarrow Q)$
1	1	0	0	1	1
1	0	1	0	0	0
0	1	0	1	1	1
0	0	1	1	1	1

The sentences are equivalent.

2. { $(P \rightarrow Q)$ } \vdash $(\sim Q \rightarrow \sim P)$.

1	(1)	$(P \rightarrow Q)$	А
2	(2)	$\sim Q$	A (for CP)
2	(3)	$(P \rightarrow \sim Q)$	$2 \rightarrow I$
1,2	(4)	~P	1,3 ~I
1	(5)	$(\sim Q \rightarrow \sim P)$	2,4 CP

3. {
$$(\sim Q \rightarrow \sim P)$$
 } $\vdash (P \rightarrow Q)$.

1	(1)	$(\sim Q \rightarrow \sim P)$	А
2	(2)	Р	A (for CP)
3	(3)	~Q	A*
1,3	(4)	~P	1,3 →E
1	(5)	$(\sim Q \rightarrow \sim P)$	3,4 CP
2	(6)	$(\sim Q \rightarrow P)$	$2 \rightarrow I$
1,2	(7)	~~Q	5,6 ~I
1,2	(8)	Q	7 ~E
1	(9)	$(P \rightarrow Q)$	2,8 CP

4. Give the contrapositive:

- a. If Terrence [doesn't not] knows the answer, then Karen doesn't know the answer.
- b. If Gary [doesn't not] brings dip to the party, then Lou [doesn't not] brings chips.
- c. If there is no thunder, then there is no lightning. There is no thunder only if there is no lightning.
- d. If the textbook is [not not] clear enough, then students do not complain. The textbook is [not not] clear enough only if the students do not complain.

5. Kermit sings, and Miss Piggy loves Kermit.

6. Let k = Kermit, p = Miss Piggy, H = "... is happy," and S = "... is singing." Then, we have: (Hk \lor Sp)

7. Let f = Fozzie, s = Statler, and w = Waldorf. Let J = "... tells a joke," and let H = "... heckles ---." Then, we have:

 $(Jf \rightarrow (Hsf \land Hwf))$

8. Every experiment conducted by Dr. Bunsen Honeydew injures Beaker.

9. Let G = "... is green," let M = "... is a Muppet," let S = "... sings," and let P = "... plays the banjo." Then, we have:

 $(\exists x)((Gx \land Mx) \land (Sx \land Px))$

10. Examples of relations could be lots of things. Here are a few:

a. Symmetric: H = "... is exactly as healthy as ---" S = "... is shaking hands with ---" C = "... is in the same class as ---"
b. Asymmetric G = "... is gentler than ---" K = "... climbs faster than ---" C. Transitive O = "... is older than ---" U = "... contains ---" I = "... is identical with ---"